
www.manaraa.com

Towards an Evolutionary Formal Software Development

Dieter Hutter and Axel Schairer
German Research Center for Artificial Intelligence

Stuhlsatzenhausweg 3, D 66213 Saarbrücken, Germany

Abstract

Although formal methods have been successfully applied
in various industrial applications, their use in software de-
velopment is still restricted to individual case studies. To
overcome this situation we aim at a methodology for an
evolutionary formal software development which allows for
a stepwise and incremental development process along the
line of rapid prototyping. The approach is based on work on
a formal management of change for formal developments
which is able to maintain proofs when changing specifica-
tions.

1. Introduction

Software development is usually organized by a life cy-
cle model which structures and guides the activities between
an initial idea of a product and its final implementation or
performance testing. The most prominent model is the wa-
terfall life cycle model in which the development process is
organized as a sequence of steps from the initial software
concept, requirement analysis, etc. through implementation
and testing. Each phase is separated; reviews are hold at the
end of each phase to determine whether the project is ready
to advance to the next phase. However applying the wa-
terfall life cycle model requires a correct and complete un-
derstanding of the project already from the beginning since
backing up from mistakes, made in previous phases, is a
difficult and expensive task. To overcome these restrictions
and to cope with changing needs of the customers, life cycle
models like evolutionary prototyping or evolutionary deliv-
ery have been developed which allow the development of
the system concept as one moves through the project.

Life cycle models for formal methods are typically or-
ganized analogously to the waterfall model. Formal soft-
ware development (as it is for instance incorporated in VSE
[1], KIV [3] or SPECWARE [7]) is considered as a top-
down approach, starting with a formal requirement speci-
fication and ending with an executable (with respect to the
underlying abstract machine) specification. For each two

successive specifications a formal refinement relation has
to guarantee that the needs of the upper specification are
taken up in the more detailed lower specification. More for-
mally speaking, the axioms forming the upper specification
– once they are mapped (via some morphism) to the lan-
guage of the lower specification – have to be theorems of
this more detailed specification. This is established by com-
puting sufficient conditions for this to be the case, so called
proof obligations, and constructing formal proofs for these
obligations. Although the arising proof obligations are tack-
led with the help of automated reasoning techniques, they
lengthen significantly the development process. Fully auto-
mated techniques like model checking are often used suc-
cessfully in the context of hardware verification, however,
for software development often (partially) interactive theo-
rem proving has to be used because the non-finite domains
can not be treated directly by fully automatic techniques.

Changing specifications inside a formal development
will endanger the refinement relations and invalidate re-
lated, already existing proofs. As it takes months or even
years to perform these proofs for a small or medium sized
industrial project, an evolutionary formal software devel-
opment is impracticable without appropriate techniques to
(quickly) adjust the proof work in a changing environment.
Various techniques have been developed to calculate and re-
strict the impacts of changes within formal software devel-
opments. The notion of development graphs [6, 2] allows
for a logical encoding of structured specifications incorpo-
rating a management of change to minimize proof work in
case of changing specifications. Recent extensions of devel-
opment graphs incorporate the notion of hidings [10] and
translations between different logic formalisms [9]. While
development graphs cope with the validity of formal rela-
tions between theories and related proofs, other techniques
have been developed to adapt existing proofs to changed
specifications. Strategic proof information, encoded into
tactics used for the proof search, as well as structural in-
formation of the given proof, are reused to tackle the proof
of a changed problem (e.g. [11, 5]).

Although these techniques have been developed to cope
with “small” changes, caused for instance by fixing errors



www.manaraa.com

of the specifications, their success within this domain may
also indicate that the dream of an evolutionary formal de-
velopment will come true in the near future. In this paper,
we outline a methodology to combine evolutionary proto-
typing and formal developments by stepwise refinements.
Instead of considering a formal development as a sequence
of specifications, we construe an evolutionary formal soft-
ware development as a sequence of formal developments.
Each development follows from the previous ones by ap-
plying some predefined transformation technique whereby
transfering as much proof work as possible automatically.
In section 2 we will investigate the nature of these transfor-
mations on formal developments and in section 3 we will
present an example of such a transformation.

2. Evolutionary Formal Development

In practice, formal software development, as it is com-
mon today, allows only to increment the existing develop-
ment by adding new specification parts or providing new
proofs. In all existing systems the change or removal of
specification parts will usually invalidate all related proofs
and causes the developers to redo most of the work again.
But adding new parts to the development is constrained
by the notion of formal refinements. Since the executable
specification has to satisfy the axioms of the requirement
specification, adding new features to a program or intro-
ducing new exception handling is usually impossible with-
out changing the formal requirement specification. Thus,
already the top level formal specification must take into ac-
count design decisions usually made during implementation
in a non-formal setting.

To overcome the limitations, mentioned above, we view
an evolutionary formal software development processD =
D1; : : : ;Dn as a sequence of individual (self contained) for-
mal developmentsD1; : : : ;Dn. Thus, each of these devel-
opmentsDi consists of layers of specifications and proofs
of the refinement relations between successive layers. The
soundness of the final program is guaranteed only by the
soundness of the last formal developmentDn but does not
depend on previous versionsDi (1� i < n). (Therefore, at
each point in time in the development process we only have
to store and work on the last formal development, unless
an earlier one is of independent interest.) It may seem as
if we have increased our work as we now have to provide
n developments instead of a single one. However, the idea
is to reuse most of a developmentDi to construct the de-
velopmentDi+1. More formally speaking, we are interested
in transformationsτi which map a developmentDi (consist-
ing of specifications and proofs) into the next development
Di+1. The more we can automate this mapping, i.e. the more
we can map existing proofs, the less overhead we incur by
evolutionary formal software development. Ideally, we can

reuse all existing proof work such that for each new de-
velopmentDi+1 we only have to care about thedifferences
of Di andDi+1 rather the whole ofDi+1. Furthermore we
would “only” have to adjust the proofs to the more complex
environment rather than doing the proofs from scratch.

In the following we will discuss different types of such
mappings between formal developments.

2.1 Changes of Logical Representations

The efficiency of using formal methods relies on the
choice of an appropriate logical representation which eases
the natural specification of the intended system and the
guidance of the proofs to be done. The more expressive the
logic is, however, the more difficult it is typically to guide
the automatic proof search. This distinction is a motivation
to switch between different logical representations.

An example is the use of abstractions for model check-
ing, e.g. [4]. A specification in an expressive formalism is
transformed into a finite state abstraction which can then
be verified using model checking. In the reverse direc-
tion, i.e. if Di is the abstraction ofDi+1, by construction
of the abstraction certain properties proved inDi carry over
to Di+1. In other words,τi is a transformation such that cer-
tain proven properties are invariant with respect toτi , and
proofs for the properties inDi+1 can be computed from the
proofs inDi and knowledge about the abstraction.

2.2 Changes Inside Logical Representations

As part of the formal development process, specifica-
tions are changed, either because errors have to be corrected
and changed requirements have to be taken into account, or
because this is part of the specification methodology. An
example for the latter are changes in specifications as re-
quired by fault transformations [8].

Changing specifications is usually done by free edit-
ing of the specifications. No logical relation between the
specification before and after the editing can be guaran-
teed because there is no restriction on what the user can
change in such an editing step. After the specification
has been changed, proofs that were already present have
to be patched and repaired by techniques of management
of change. This works for some cases, but not for oth-
ers. Many editing steps that occur regularly are very hard
to handle this way. This is due to the fact that the tools
to patch the proofs do not know about the intention of the
user’s changes. Also, typically it is very hard for the user to
forsee what effects repairing the proofs will have.

Instead of editing specifications freely, we propose to
view editing of specifications as a sequence of transforma-
tions on specifications and proofs. Each of a set of prede-
fined transformations corresponds to a very simple editing



www.manaraa.com

step. Now, users are restricted in the ways they can edit the
specifications using these predefined transformations only.
On the other hand, the tools can be built to know exactly
what each transformation does and how the proofs can be
repaired and patched accordingly. This has the advantage
that as part of editing a specification the proofs are trans-
formed automatically in a foreseeable manner. This is a
generalization of what has been worked out for the special
case of editing terminating SML programs in [12]. In the
following section we will sketch some transformations that
can be used to this effect in the setting of more general for-
mal software development.

3. An Example

As mentioned in Sect. 2.2 editing specifications in a (par-
tial) formal development can be seen as a series of trans-
formations on the whole formal development. In the fol-
lowing we sketch two transformations that can be used to
incrementally build specifications. Assume we have con-
structed a specification for a Unix-like file system. To keep
the presentation manageable we will only look at a part of
the very simplified version of the specification. A state of
the file system,s, is represented by a mappings.filesfrom
file names to files and a set of directoriess.dirs. State transi-
tions defined on the file system are operations to create and
delete files and directories, and for reading and updating the
contents of files. Let us look ataddfilewhich adds an empty
file with namen to a given directoryd in the file store. Its
definition as a predicate on predecessor and successor states
sands0 is8d : Dir ;n : Name;s;s0 : State:

addfile(d;n;s;s0),
if :direxists(d;s) thens0 = s

elseif : : : /* other error cases */

else s’.dirs= s.dirs^
s’.files= insert(file(d;n;Empty);s.files)

One of many properties that we prove as an invariant of
the system is that for each file in the store its parent di-
rectory exists:8s : State: I (s) , 8 f : File: f 2 s.files)
f.parent2 s.dirs. Amongst other things we have to prove
that I is maintained byaddfile: 8d : Dir ;n : Name;s;s0 :
State: I (s) ^ addfile(d;n;s;s0) ) I (s0). Assume that we
have completed some or even all of the proofs for this and
many other invariants and operations. Then we decide to
add access permissions to the model, i.e. add permissions
to be stored with files and directories, add permissions to
be associated with operations, and change the state transi-
tions to check whether an operation is allowed or not. Note
that these changes have effects on all operations, because all
operations mention the state, which we change. We briefly

sketch some of the transformations we use to accomplish
this without losing the proofs that we have already done.

First, we use the transformationADD-SLOT to add an
additional slot to the entries stored ins.files. Where be-
fore entries had the slotsparent, name, andcontents, they
will now have an additional slotpermfor their access per-
missions, i.e. the constructorfile expects an additional ar-
gument. ADD-SLOT transforms the specification and the
proofs in such a way that they are again in a consis-
tent state. For our example, throughout the specification
wherever there is an occurrence of a term of the form
file(t1; t2; t3), the term is transformed intofile(t1; t2; t3; p).
The dummy parameterp : Perm is a new constant intro-
duced by the transformation. The definition ofaddfilenow
reads8d : Dir ;n : Name;s;s0 : State: addfile(d;n;s;s0) ,: : : file(d;n;Empty; p) : : : The same transformation is ap-
plied to all proofs in the formal development by adding the
dummy parameterp to occurrences of terms of the form
file(: : : ). Since we only replace terms in a tightly con-
trolled fashion, each inference step in the transformed proof
is again a valid inference step. This is fairly straightfor-
ward, the only non-obvious point being proof obligations
of the formfile(t1; t2; t3) = file(t 0

1; t 0
2; t 0

3). However, proving
the new obligationfile(t1; t2; t3; p) = file(t 0

1; t 0
2; t 0

3; p)works in
the same way as proving the original obligation except that
p= p occurs as an additional goal or unification constraint
and can be handled uniformly because the same constantp
has been used in all places. I.e. the proofs can be extended
in a uniform way to close the additional (trivial) subgoal.
This transformation has left the user with a state of the for-
mal development that is well-formed again, and in this case,
no new open subgoals have been introduced. However, the
formulation ofaddfile, including the constantp, is not what
is ultimately intended. Also, considering thatp is inserted
everywhere where there is a term involving the constructor
file, e.g. in other operations, it is clear that we need to re-
place different occurrences of the newly inserted constantp
by different terms, which we accomplish with the transfor-
mationCHANGE-TERM sketched below.

Before we applyCHANGE-TERM we add a new argu-
ment to the operationaddfileto represent the user that ex-
ecutes the command. This is done by a transformation
similar to ADD-SLOT: terms involvingaddfile are trans-
formed throughout the specification and proofs by adding
another constantu at the appropriate places. The definition
of addfilethen looks like8d : Dir ;n : Name;u : User;s;s0 :
State: addfile(d;n;u;s;s0), : : : file(d;n;Empty; p) . (For
lack of space we have not shown the transformation to add
u to the variables that are universally closed over.) We are
now ready to replace the occurrence ofp by stdperm(u),
which denotes the standard access permissions of subject
u. The user applies the transformationCHANGE-TERM

which transforms the specification and proofs by replacing



www.manaraa.com

all occurrences ofp that depend on the particular occur-
rence ofp we have applied the transformation on. In the
invariant proof foraddfile the changes are again straight-
forward except for one place in the proof where we use
a lemma about file mappings:8x;y : File; r : List: x 6=
y ) x 2 y :: r ) x 2 r. In the original proof we used
the lemma withy instantiated tofile(d;n;Empty; p) and
later unified the term with the term from the definition of
addfile. So, in this special case we know that we should
change the instantiation ofy in the new proof. However,
in general it is not decidable locally what instantiation to
use. CHANGE-TERM, therefore, does not attempt to guess.
When, later on in the proof, the two termsfile(d;n;Empty; r)
and file(d;n;Empty;stdperm(u)) do not match it in-
troduces a subgoal that readsfile(d;n;Empty; p) ,
file(d;n;Empty;stdperm(u)). With this subgoal, the main
proof can be carried ahead and transformed, but there is an
additional open subgoal. The user has to come back to this
point and correct the instantiation ofy in the lemma using
an appropriate transformation.

All these example transformations just do one simple
thing, and use special knowledge to transform the whole
development in a sensible and expectable way. Although
each transformation is simplistic, a combination of several
transformations can be used to accomplish the more com-
plicated changes the user wants to make in a step-by-step
fashion. As is expected in general, transformations will in-
troduce open subgoals or even invalidate subproofs, but the
majority of the proof effort is preserved and the open sub-
goals can be closed using a combination of inference steps
and other transformations. The examples we have worked
out on paper so far indicate that this approach works quite
well and intuitively, especially when compared to the alter-
native of doing the proofs from scratch.

4. Conclusion

In this paper we have presented first steps towards a gen-
uinely evolutionary formal software development based on
stepwise transformations on formal developments. The re-
sults we got are very promising and we are confident that
the technique proves to be helpful once it is worked out in
full detail. Since a formal development documents all infor-
mation about how top-level requirements are related to the
concrete implementation, formal development may, there-
fore, be an appropriate way to deviseadaptablesecure soft-
ware libraries. In particular, the adaption of such a library
using transformations may prove to be more time effective
than the (non-formal) development from scratch.

In our future work we intend to develop sets of trans-
formation rules for example domains. As noted in Sect. 2
there are many such domains which motivate transforma-
tion rules. However, the benefit of keeping proof effort over

transformations can only be realized if the set of transfor-
mation rules is complete in the sense that application of
transformation rules does not have to be interrupted by other
editing steps which invalidates proofs.

References

[1] S. Autexier, D. Hutter, B. Langenstein, H. Mantel, G. Rock,
A. Schairer, W. Stephan, R. Vogt, and A. Wolpers. VSE:
Formal methods meet industrial needs.International Jour-
nal on Software Tools for Technology Transfer, Special Issue
on Mechanized Theorem Proving for Technology, 3(1):66–
77, 2000.

[2] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards
an evolutionary formal software-development using CASL.
In C. Choppy and D. Bert, editors,Recent Trends in Alge-
braic Development Techniques, (WADT-99), pages 73–88.
Springer, LNCS 1827, 2000.

[3] M. Balser, W. Reif, G. Schellhorn, and K. Stenzel. Kiv 3.0
for provably correct systems. InCurrent Trends in Applied
Formal Methods. Springer LNCS 1641, 1999.

[4] E. M. Clarke, O. Grumberg, and D. E. Long. Model check-
ing and abstraction.ACM Transactions on Programming
Languages and Systems, 16(5), 1994.

[5] D. Hutter. Annotated reasoning.Annals of Mathematics and
Artificial Intelligence (AMAI). Special Issue on Strategies in
Automated Deduction, 29:183–222, 2000.

[6] D. Hutter. Management of change in verification systems.In
Proceedings 15th IEEE International Conference on Auto-
mated Software Engineering, ASE-2000, pages 23–34. IEEE
Computer Society, 2000.

[7] R. Juellig, Y. Srinivas, and J. Liu. SPECWARE: An ad-
vanced environment for the formal development of complex
software systems.Lecture Notes in Computer Science, 1101,
1996.

[8] H. Mantel and F. Gärtner. A case study in the mechanical
verification of fault tolerance.Journal of Experimental and
Theoretical Artificial Intelligence (JETAI), 12(4), 2000.

[9] T. Mossakowski. Heterogeneous development graphs. Sub-
mitted for publication, 2001.

[10] T. Mossakowski, S. Autexier, and D. Hutter. Extending de-
velopment graphs with hiding. InProceedings of Funda-
mental Approaches to Software Engineering (FASE2001).
Springer, LNCS 2029, 2001.

[11] A. Schairer, S. Autexier, and D. Hutter. A pragmatic ap-
proach to reuse in tactical theorem proving. InProceedings
Workshop on Strategies, 1st International Joint Conference
on Automated Reasoning, IJCAR-2001, Siena, Italy, 2001.

[12] J. Whittle, A. Bundy, R. Boulton, and H. Lowe. An ML
editor based on proofs-as-programs. InProc. 14th Int. Conf.
Automated Software Engineering (ASE-1999), 1999.


